
LEFSCHETZ FIBRATIONS AND SYMPLECTIC HOMOLOGY 25

Definition 5.3. Let M be a manifold with contact form α. Let
S : {Reeb orbits} → R, S(o) :=

�
o
α. Then the period spectrum S(M) is

the set im(S) ⊂ R. We say that the period spectrum is discrete and injective
if the map S is injective and the period spectrum is discrete in R.

Definition 5.4. Let H be a Hamiltonian on a symplectic manifold M . Then
the action spectrum S(H) of H is defined to be:

S(H) := {AH(o) : o is a 1-periodic orbit of XH} .

AH is the action defined in section 2.3.

We let F be a smooth fibre of (E, π) and ΘF := Θ|F . Also we let S be the

base of this fibration. Let rS and rF be the “cylindrical” coordinates on Ŝ
and F̂ respectively (i.e. ωS = d(rSθS) on the cylindrical end at infinity and
similarly with rF ). Let W be some connected component of the boundary
of S. Let C := π−1(W )× [1,∞). Note: we will sometimes write rS instead
of π∗rS so that calculations are not so cluttered. We hope that this will
make things easier to understand for the reader.

The boundary of E is a union of 2 manifolds whose boundaries meet at
a codimension 2 corner. We can smooth out this corner so that E becomes
a compact convex symplectic manifold M such that the completion �M is

exact symplectomorphic to �E. This means we can view M as an exact

submanifold of �E. We will let ∂M × [1,∞) be the cylindrical end of �E = �M
and we will let r be the coordinate for the interval [1,∞). We will assume

that the period spectrum of ∂M is discrete and injective. Let �p : �E → R

be an admissible Hamiltonian on �M = �E with slope p with respect to the
cylindrical end ∂M×[1,∞) where p is a positive integer. We will also assume
that �p < 0 inside M and that �p tends to 0 in the C2 norm inside M as
p tends to infinity, and that �p = hp(r) in the cylindrical end. We assume
that h�p(r) ≥ 0 for all r and h�p(r) = p for r ≥ 2. We also assume that
h��p(r) ≥ 0 for all r. We can perturb the boundary of M to ensure that no
positive integer is in the period spectrum of ∂M and hence p is not in the
action spectrum. Hence the family (�p)p∈N+

is a cofinal family of admissible
Hamiltonians.

Theorem 5.5. There is a cofinal family of Lefschetz admissible Hamiltoni-

ans Kp : �E → R and a family of almost complex structures Jp ∈ Jreg( �E,Kp)
such that for p� 0:

(1) The periodic orbits of Kp of positive action are in 1-1 correspon-
dence with the periodic orbits of �p. This correspondence preserves
index. Also the moduli spaces of Floer trajectories are canonically
isomorphic between respective orbits.

(2) Kp < 0 on E ⊂ �E.
(3) Kp|E tends to 0 in the C2 norm on E as p tends to infinity.
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This theorem implies that:

(1) lim
−→

p

SH
[0,∞)
∗ (Kp) = lim

−→
p

SH∗(�p)

SH
[0,∞)
∗ (Kp) := SH∗(Kp)/SH

(−∞,0)
∗ (Kp) where SH

(−∞,0)
∗ is the symplectic

homology group generated by orbits of negative action. We also have:

(2) lim
−→

p

SH∗(Kp) = lim
−→

p

SH
[0,∞)
∗ (Kp)

This is because there exists a cofinal family of Lefschetz admissible Hamil-
tonians Gp such that:

(1) Gp < 0 on E ⊂ �E.
(2) Gp|E tends to 0 in the C2 norm on E as p tends to infinity.
(3) All the periodic orbits of Gp have positive action.

Property (3) of Gp will follow from Lemma 5.6. Using the fact that both Kp

and Gp are cofinal, tending to 0 in the C2 norm on E and are non-positive
on E, there exist sequences pi and qi such that:

Kpi
≤ Gqi

≤ Kpi+1

for all i. Hence:

lim
−→

p

SH
[0,∞)
∗ (Gp) = lim

−→
p

SH
[0,∞)
∗ (Kp).

Property (3) of Gp implies:

lim
−→

p

SH
[0,∞)
∗ (Gp) = lim

−→
p

SH∗(Gp).

This gives us equation (2). Combining this with equation (1) gives:

lim
−→

p

SH∗(Kp) = lim
−→

p

SH∗(�p).

This proves Theorem 2.22.
Before we prove Theorem 5.5, we need two preliminary Lemmas. We need

a preliminary Lemma telling us something about the flow of a Lefschetz
admissible Hamiltonian. We let H = π∗HS +π∗1HF be as in Definition 2.21.
We assume that the slope of HS and HF is strictly less than some constant
B > 0. We set HF to be zero in F , and HF to be equal to hF (rF ) in the
region rF ≥ 1 such that h�F (rF ) ≥ 0 and h��F (rF ) ≥ 0. We also assume that
for some very small � > 0, h�F is constant for rF > � and not in the period
spectrum of ∂F so that all the orbits lie in the region rF ≤ �. We define
HS in exactly the same way so that it is zero in S and equal to hS(rS)

on the cylindrical end of �S where hS has the same properties as hF . The
action of an orbit of HF in the cylinder rF ≥ 1 is rFh�F (rF ) − hF (rF ) and
similarly the action of an orbit of HS in rS ≥ 1 is rSh

�

S(rS) − hS(rS), so
we can choose � small enough so that the actions of the orbits lie in the
interval [0, B] because the slope of HS and HF is less than B. We have from
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Section 4, θ = Θ+ kπ∗θS where Θ is the 1-form associated to the Lefschetz
fibration (it is a 1-form such that Θ|F makes each fibre F into a compact
convex symplectic manifold. Also θS is the 1-form making the base S into a
compact convex symplectic manifold. The constant k is some large constant.

Lemma 5.6. For k large enough, there exists a constant Ξ depending only
on E and θ (not on H) such that the action of any orbit of H is contained
in the interval [0,ΞB].

Proof. Inside E, we have that the Hamiltonian is 0 so all the orbits have
action 0 there. In the region A as defined in Definition 2.21, we have that
the orbits come in pairs (γ,Γ) where γ is an orbit from HS and Γ is an orbit
of positive action from HF . The action of (γ,Γ) is the sum of the actions
of γ and Γ. Both these actions are positive. Also their actions are bounded
above by B.

So we only need to consider orbits outside the region A∪E. The Hamil-
tonian π∗1HF is zero in this region so we only need to consider π∗HS. We
will consider the orbits of π∗HS in the region rS ≥ 1. In this region, there
are no singular fibres of the Lefschetz fibration, so we have a well defined
plane field P which is the ω-orthogonal plane field to the vertical plane
field which is the plane field tangent to the fibres of π. The Hamiltonian
flow only depends on ω|P and not the vertical plane field because π∗HS

restricts to zero on the vertical plane field. The symplecic form ω|P is equal
to Gkπ∗dθS |P for some function G > 0. This means that the Hamiltonian
vector field associated to π∗HS is 1

G
times the horizontal lift of the Hamil-

tonian vector field associated to HS in S. Let V be this horizontal lift. The
construction of the completion of a Lefschetz fibration before Definition 2.16
ensures that the region rS � 1 is a product W × [1,∞) where rS param-
eterizes the second factor of this product and Θ is a pullback of a 1-form
on W via the natural projection W × [1,∞) → W . This means that Θ is
invariant under translations in the rS direction (i.e. under the flow of the
vector field ∂

∂rS
which is 1

rS
times the horizontal lift of λS where λS is the

Liouville flow in �S). We also have that dθS is invariant under translations in
the rS direction (i.e. under the flow of 1

rS
λS). Hence the symplectic struc-

ture ω is also invariant under translations in the rS direction for rS � 0.
This means that the function G is bounded above and below by positive
constants as the symplectic structure is invariant under translations in the
rS direction and if we travel to infinity in the fibrewise direction (i.e. if we
travel into the region A), then G = 1. We want bounds on the function
V (θ) because the function G is bounded. Let Y be the Hamiltonian flow

of rS in �S and let Ỹ be its horizontal lift to P . We have that Y (θS) = 1.

This means that Ỹ (π∗θS) = 1. We also have that Ỹ (Θ) is bounded because

Θ is invariant in the rS direction for rS large and Ỹ (Θ) = 0 if we are near
infinity in the fibrewise direction. We choose the constant k large enough
so that Ỹ (θ) = Ỹ (Θ) + kỸ (π∗θS) > 0. This function is also bounded above
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because Ỹ (Θ) is bounded and kỸ (π∗θS) = kY (θS) = k. This choice of k

only depends on the Lefschetz fibration and not on H. Now, V = h�S(rS)Ỹ .
Because h�S bounded below by 0, we have that V (θ) is bounded below by 0
and bounded above by some constant multiplied by the slope of HS. All the
orbits of H lie in some compact set where H is C0 small, so the action of an
orbit is near

�
o
V (θ)dx where the integral is taken over an orbit o and dx is

the volume form on o giving it a volume of 1. This means that the action of
these orbits is in the interval [0,ΞB] for some constant Ξ. This completes
our theorem. �

The manifold �M = �E has a cylindrical end ∂M × [1,∞). We let r be the
radial coordinate of this cylindrical end. The we define set {r ≤ R} to be
equal to M ∪ (∂M × [1, R]). We define the sets {rF ≤ R} and {rS ≤ R} in
a similar way.

Lemma 5.7. There exists a constant � > 0 such that for all R ≥ 1, we
have that {r ≤ R} ⊂ {rS ≤ �R} and {r ≤ R} ⊂ {rF ≤ �R}.

Proof. We will deal with rS first. The level set r = R is equal to the flow of
∂M along the Liouville vector field λ for a time log(R). Hence, all we need
to do is show that drS(λ) is bounded above by e�rS . This means that if p
is a point in ∂M , then the rate at which rS(p) increases as we flow p along
λ is bounded above by e�rS(p). Hence if we flow p for a time log(R) to a
point q, then rS(q) ≤ �R which is our result.

We will now show drS(λ) is bounded above by e�rS to finish the first
part of our proof. We let Θ be a 1-form associated to E as constructed
before Definition 2.16. Then θ = Θ+ π∗θS where θS is a convex symplectic

structure for the base �S. We have that ω = dΘ + π∗dθS. The construction
before Definition 2.16 ensures that the region rS � 1 is a product W×[1,∞)
where rS parameterizes the second factor of this product and Θ is a pullback
of a 1-form on W via the natural projection W × [1,∞)→W . This means
that Θ is invariant under translations in the rS direction. Hence dΘ is also
invariant under these translations. Also π∗dθS is invariant under translations
in the rS direction. All of this means that the vector field V defined as the
ω-dual of Θ is invariant under these translations for rS large. This implies
that drS(V ) is bounded.

Let V � be the ω-dual of π∗θS. Let λS be the Liouville vector field in �S.
Then V � = GL where L is the horizontal lift of λS and G : �E → R is defined
in the proof of Lemma 5.6. The proof of Lemma 5.6, tells us that G is a
bounded function. Also, drS(λS) = rS , hence

drS(V
�) = GdrS(L) = GdrS(λS) = GrS

Hence drS(V
�) is bounded above by some constant multiplied by rS. Finally,

we have that λ = V + V � which means that there exists a � > 0 such that
drS(λ) is bounded above by e�rS .
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We will now deal with rF . This is slightly more straightforward because

the Lefschetz fibration is a product ∂F × [1,∞) × �S and θ splits up in this
product as Θ+π∗θS , where we can view Θ as 1-form on ∂F×[1,∞). We need
to bound drF (λ). In this case, because everything splits in this product, we
have that drF (λ) = drF (Λ) where Λ is the ω-dual of Θ. This is equal to
rF ≤ e�rF as � > 0. Hence we have that r ≤ R implies that rF ≤ �R. �

Proof. of Theorem 5.5. Let �p be the Hamiltonian as above. We will write
� = �p for simplicity. The idea of the proof is to modify the Hamiltonian
� outside some large compact set so that it becomes Lefschetz admissible
and in the process only create orbits of negative action without changing
the orbits of � or the Floer trajectories connecting orbits of �. We will do
this in three sections. In section (a), we will modify � to a Hamiltonian ς
so that it becomes constant outside a large compact set κ while only adding
orbits of negative action. This is exactly the same as the construction due
to Hermann [15]. In section (b) we will consider a Lefschetz admissible
Hamiltonian L which is 0 in the region κ, but has action bounded above so
that the orbits of L+ ς outside κ have negative action. We define our cofinal
family Kp := L + ς. (c) we ensure that the Floer trajectories and pairs of
pants satisfying Floer’s equation connecting orbits of positive action stay
inside the region r ≤ 2.

(a) We have that p is the slope of the Hamiltonian � and this is not in
the period spectrum of ∂M . Hence, we define µ := µ(p) > 0 to be smaller
than the distance between p and the action spectrum. Define:

A = A(p) := 3p/µ > 1.

We can assume that A > 4 because we can choose µ to be arbitrarily

small. Remember that �E = �M where M is a compact convex symplectic

manifold, and that r is the radial coordinate for the cylindrical end of �M .
We define ς to be equal to � on r ≤ A−1. On the region r ≥ 1, we have that
� is equal to hp(r). We will just write h instead of hp. Set ς = k(r) for r ≥ 1
with non negative derivative. This means that in the region 1 ≤ r ≤ A− 1
we have that h(r) = k(r). Hence in r ≤ A − 1 we have that k��(r) ≥ 0 and
k�(r) ≥ 0, and in the region 2 ≤ r ≤ A− 1 we have k�(r) = p. Also we have
that ς is C2 small and negative for r near 1. Because ς is C2 small, we can
also assume that p is large enough so that for r near 1, k� � p. Because �p is
cofinal, we can assume that p is large enough so that h(2) = k(2) > 0. Both
these previous facts mean that p(A − 2) < k(A − 1) < p(A − 1). Outside
this region, we define k to be a function with the following constraints: For
r ≥ A set k(r) to be constant and equal to C where C = p(A − 1). In the
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region A − 1 ≤ r, k�� ≤ 0. We assume that k� ≥ 0 for all r ≥ 1. Here is a
picture:

Figure 5.8.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

C

A−1 A1 2

ς

p

We want to show that the additional orbits of ς only have negative action.
All these orbits lie in the region r ≥ 2. In fact because p is not in the action
spectrum, they lie in the region r ≥ A−1. In the region {r : p−µ < k�(r) ≤
p}, we have that ς has no periodic orbits. Also, the action of a periodic
orbit is k�(r)r − k(r). Combining these two facts implies that the action of
a periodic orbit in the region 2 ≤ r is less than

(p − µ)r − k(r) ≤ (p− µ)A− p(A− 2)

= −µA+ 2p = −µ
3p

µ
+ 2p = −p < 0

Hence we have a Hamiltonian ς equal to � in the region r ≤ 2 and such that
it is constant and equal to C = p(A − 1) in the region r ≥ A − 1 and such
that all the additional periodic orbits created have negative action.

(b) Lemma 5.6 tells us that there exists a cofinal family of Lefschetz
admissible Hamiltonians Λp such that the action spectrum of Λp is bounded
above by some constant Ξ multiplied by the slope of λp. We can assume that

both the slopes of λp are equal to
�
(p) (if

√
p is in the action spectrum of the

fibre or the base, then we perturb this value slightly to ensure that Λp has
orbits in a compact set). This means that the action of Λp is bounded above
by Ξ

√
p. The Hamiltonian Λp is equal to zero in E. We will now define a

Hamiltonian Lp as follows: We let � be defined as in Lemma 5.7. Set Lp = 0
in the region {rS ≤ �A} ∩ {rF ≤ �A}. In the region {rS ≥ 1} ∪ {rF ≥ 1},
we have that Λp is a function of the form π∗1hF (rF ) + π∗hS(rS). Here, π1 is

the natural projection: ∂F × [1,∞)× �S → ∂F × [1,∞) (this is the same as
the projection defined just before Definition 2.21). So, we set the function
π∗1hF (rF ) to be zero outside the domain of definition of π1. Also, π∗hS is
zero outside the region rS ≥ 1. We define Lp to be

π∗1hF (rF −�A) + π∗hS(rS −�A)
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in the region {rS ≥ �A} ∪ {rF ≥ �A}. Hence we have a well defined
function Lp. Because Lp has scaled up, we have that the action spectrum
of Lp is equal to �A multiplied by the action spectrum of Λp. Hence, we
have that the action spectrum of Lp is bounded above by �AΞ

√
p.

Because {r ≤ A} ⊂ {rS ≤ A} ∩ {rF ≤ A}, we can add Lp to ς without
changing the orbits of ς in the region r ≤ A. Also, the action of the orbits
of ς + Lp in the region r ≥ A is bounded above by �AΞ

√
p− p(A− 1). So

for p large enough we have that the additional orbits added are of negative
action.

(c) We choose an almost complex structure J ∈ Jh( �E) such that on some
neighbourhood of the hypersurface r = 2, J is admissible. Then [3, Lemma
7.2] and the comment after this Lemma ensure that no Floer trajectory or
pair of pants satisfying Floer’s equation connecting orbits inside r < 2 can
escape r ≤ 2. Hence our Hamiltonian Kp := ς + Lp has all the required
properties.

5.1. A better cofinal family for the Lefschetz fibration. In this sec-
tion we will prove Theorem 2.24. We consider a compact convex Lefschetz
fibration (E, π) fibred over the disc D. Basically the cofinal family is such
that HF = 0. This means that the boundary of F does not contribute to
symplectic homology of the Lefschetz fibration. The key idea is that near
the boundary of F the Lefschetz fibration looks like a product D×nhd(∂F )
and because symplectic homology of the disc is 0 we should get that the
boundary contributes nothing. Statement of Theorem 2.24:

SH∗(E) ∼= SHlef
∗

(E).

We will define F, S(= D), rS , rF , π1 as in the previous section. This means
that the compact convex sympectic manifold F is a fibre of E and S is the
base which in this section is equal to D. We also have that rS is a radial

coordinate for the cylindrical end of �S which we also identify with π∗rS. The

map π1 is the natural projection (∂F × [1,∞)) × �S � (∂F × [1,∞)) where

(∂F × [1,∞))× �F is a subset of �E. The function rF is a radial coordinate for

the cylindrical end of �F which we also identify with π∗1rF . Before we prove
Theorem 2.24, we will write a short lemma on the Z grading of SH∗(E).

Lemma 5.9. Let �F := π−1(a) ⊂ �E (a ∈ D). Suppose we have trivialisations

of K bE
and KbS

(these are the canonical bundles for �E and �S respectively);
these naturally induce a trivialisation of K bF

away from F . If we smoothly
move a, then this smoothly changes the trivialisation.

Proof. of Lemma 5.9.

We choose a J ∈ Jh(E). The bundle E away from Ecrit has a connection

induced by the symplectic structure. Let A ⊂ �E be defined as in Definition
2.21. Let U be a subset of A where

(1) π is J holomorphic.


